The direction change concept for reticulospinal control of goldfish escape.
نویسندگان
چکیده
This is an analysis of whether biomechanical or kinematic variables are controlled by descending reticulospinal commands to the spinal cord during escape responses (C-starts) in the goldfish. We studied how the animal contracted its trunk musculature to orient an escape trajectory. We used trunk EMG recordings as a measure of the reticulospinal output to the musculature and we simultaneously gathered high-speed cinematic records of the resulting movements. We found that the escape trajectory is controlled by (1) the relative size of the agonist versus the antagonist muscle contractions on two sides of the body and (2) the timing between these contractions. We found no separate signal for forward propulsion (or force) apart from the initial stage 1 bending of the body. Rather, the neural specification of force is embedded in the commands to bend the body. Thus, our findings demonstrate the importance of the angular kinematic components, or direction changes, caused by the descending reticulospinal command. This new direction change concept is important for two reasons. First, it unifies the diversity of C-start movement patterns into a single and rather simple quantitative model. Second, the model is analogous to the systematic EMG and kinematic changes observed by others to underlie single joint movements of limbs in other vertebrates such as primates. As in these cases, the fish capitalizes on the mechanical properties of the muscle by setting the extent and timing of agonist and antagonist contractions. This, plus the fact that sensory feedback is likely to be minimal, may enable the animal to reduce the number of computational steps in its motor commands used to produce the escape response. Because horizontal body movements in fish are a fundamental vertebrate movement pattern produced by a highly conserved brainstem movement system, our findings may have general implications for understanding the neural basis of rapid movements of diverse body parts.
منابع مشابه
Interactions between the neural networks for escape and swimming in goldfish.
Interactions between neural networks for different motor behaviors occur frequently in nature; however, there are few vertebrate models for studying these interactions. One potentially useful model involves the interactions between escape and swimming behaviors in fish. Fish can produce escape bends while swimming, using some of the same axial muscles for both behaviors. Here we study the inter...
متن کاملRole of the lateral line mechanosensory system in directionality of goldfish auditory evoked escape response.
Goldfish (Carassius auratus) escape responses to sudden auditory stimuli are mediated by a pair of reticulospinal neurons, the Mauthner (M-) cells, which integrate mechanosensory inputs from the inner ear and the lateral line (LL) to initiate a fast directional response away from the aversive stimulus. This behavior is context dependent; when near an obstruction the fish may rather turn towards...
متن کاملFlexible body dynamics of the goldfish C-start: implications for reticulospinal command mechanisms.
As a model for learning how reticulospinal networks coordinate movement, we have analyzed the function of the Mauthner (M-) neurons in the escape response of the goldfish. We used water displacements of 3-6 micron to elicit C-start escape responses. These responses consist of 2 fundamental movements that grade into each other: Stage 1 lasts 15-40 msec and rotates the body 30 degrees-100 degrees...
متن کاملCommon sensory inputs and differential excitability of segmentally homologous reticulospinal neurons in the hindbrain.
In the hindbrain of zebrafish and goldfish, reticulospinal (RS) neurons are arranged in seven segments, with segmental homologs in adjacent segments. The Mauthner cell (M-cell) in the fourth segment (r4) is known to trigger fast escape behavior. Its serial homologs, MiD2cm in r5 and MiD3cm in r6, are predicted to contribute to this behavior, which can be evoked by head-tap stimuli. However, lit...
متن کاملMauthner and reticulospinal responses to the onset of acoustic pressure and acceleration stimuli.
We determined how the Mauthner cell and other large, fast-conducting reticulospinal neurons of the goldfish responded to acoustic stimuli likely to be important in coordinating body movements underlying escape. The goal was to learn about the neurophysiological responses to these stimuli and the underlying processes of sensorimotor integration. We compared the intracellularly recorded postsynap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 13 10 شماره
صفحات -
تاریخ انتشار 1993